Death-associated protein kinase 3 mediates vascular inflammation and development of hypertension in spontaneously hypertensive rats.
نویسندگان
چکیده
Death-associated protein kinase (DAPK) is a Ca2+/calmodulin-regulated serine/threonine kinase that mediates cell death. Our recent study demonstrated that DAPK3 protein increases in the mesenteric artery from spontaneously hypertensive rats compared with Wistar Kyoto rats. Pathogenesis of hypertension is modulated at least in part by vascular inflammation. We examined whether DAPK3 mediates vascular inflammatory responses and development of hypertension. In rat mesenteric arterial smooth muscle cells, small interfering RNA against DAPK3 inhibited vascular cell adhesion molecule 1 expression and monocyte adhesion induced by tumor necrosis factor-α. DAPK3 small interfering RNA inhibited phosphorylation of c-Jun amino-terminal kinase, p38, and Akt, as well as reactive oxygen species (ROS) production induced by tumor necrosis factor-α. In human umbilical vein endothelial cells, expressions of vascular cell adhesion molecule 1, endothelial selectin, and cyclooxygenase 2, as well as ROS production induced by tumor necrosis factor-α, were inhibited by DAPK inhibitor. In vivo, blood pressure, ROS production, inflammatory molecule expression (vascular cell adhesion molecule 1 and endothelial selectin), and hypertrophy in isolated mesenteric artery were elevated in spontaneously hypertensive rats (10 weeks old), which were prevented by long-term treatment with a DAPK inhibitor (500 µg/kg per day for 6 weeks). In isolated mesenteric artery, the increased angiotensin II-induced contraction and the impaired acetylcholine-induced endothelium-dependent relaxation in spontaneously hypertensive rats were reversed by a DAPK inhibitor. The present results for the first time demonstrated in cultured smooth muscle cells and endothelial cells that DAPK3 mediates tumor necrosis factor-induced inflammatory responses via ROS-dependent mechanisms. It is also suggested that DAPK3 mediates the development of hypertension in spontaneously hypertensive rats likely via ROS-dependent inflammation, hypertrophy, and hypercontractility.
منابع مشابه
Eukaryotic elongation factor 2 kinase regulates the development of hypertension through oxidative stress-dependent vascular inflammation.
Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca2+/calmodulin-dependent protein kinase. We recently demonstrated that eEF2K protein increases in mesenteric artery from spontaneously hypertensive rats (SHR). Pathogenesis of hypertension is regulated in part by vascular inflammation. We tested the hypothesis whether eEF2K mediates vascular inflammatory responses and development of hypertensi...
متن کاملc-Src-dependent nongenomic signaling responses to aldosterone are increased in vascular myocytes from spontaneously hypertensive rats.
Aldosterone plays an important role in the pathogenesis of hypertension. We previously demonstrated that nongenomic signaling by aldosterone in vascular smooth muscle cells occurs through c-Src-dependent pathways. Here we tested the hypothesis that upregulation of c-Src by aldosterone plays a role in increased mitogen-activated protein (MAP) kinase activation, [3H]-proline incorporation, and NA...
متن کاملEffects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...
متن کاملEukaryotic elongation factor 2 kinase mediates monocrotaline-induced pulmonary arterial hypertension via reactive oxygen species-dependent vascular remodeling.
Pulmonary arterial (PA) hypertension (PAH) is a progressive and lethal disease that is caused by increased vascular contractile reactivity and structural remodeling. These changes contribute to increasing pulmonary peripheral vascular resistance, finally leading to right heart failure and death. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca(2+)/calmodulin-dependent protein kinase. We pr...
متن کاملChronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats
Vascular remodeling during chronic hypertension may impair the supply of tissues with oxygen, glucose and other compounds, potentially unleashing deleterious effects. In this study, we used Spontaneously Hypertensive Rats and normotensive Wistar-Kyoto rats with or without pharmacological inhibition of poly(ADP-ribose)polymerase-1 by an experimental compound L-2286, to evaluate carotid artery re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2012